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What is Data Visualization?

* Quantitative data presented in visual form?

— Supports exploration, examination, and
communication of information'

— Common characteristics: computer-supported,
interactive, visual representation, abstract,
amplifies cognition?

e 2 objectives:

1. Analysis

2. Communication?



Why Visualize Data?

Humans generally poor at gaining insight from data in
numerical form3

Close relationship between vision & cognition?

Allows you to explore and make sense of data, and
communicate information®

Make patterns, trends, exceptions visible and
understandable?

Extend capacity of memory — puts in front of eyes what we
couldn’t otherwise hold in mind?

Especially useful when little known about data and analysis
goals are vague®

Can help with hypothesis generation®
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"Anscombe's quartet 3" by Schutz via Wikimedia Commons



http://commons.wikimedia.org/wiki/File:Anscombe's_quartet_3.svg/media/File:Anscombe%27s_quartet_3.svg

“One great virtue of good graphical representation is that it can
serve to display clearly and effectively a message carried by
quantities whose calculation or observation is far from simple.”

— John W. Tukey!
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"Scatter plot" by UCRL via Wikimedia Commons

llgood”
data
visualization?

\ (more on this later) /



http://commons.wikimedia.org/wiki/File:Scatter_plot.jpg/media/File:Scatter_plot.jpg

lllustration vs Visualization

Data lllustration:

* To impress, inspire awe, make people wonder’
— Memorable & engaging vs comprehensible®

Data Visualization:

e To inform’

“Wizards Shooting Stars” Washington Post via FlowingData

— Explore, Make sense of, and Communicate

— Optimal for: — -
* Seeing big picture ‘ ALl
* Rapidly comparing values “m“ SREEL N AN T T
e Seeing patterns among values ~— R O R ogtocima S o sl
« Comparing patterns across e B ‘
multiple sets® e
ot o bR

“Buckets” by Peter Beshai via FlowingData


http://flowingdata.com/2014/11/04/basketball-shot/
http://flowingdata.com/2014/12/08/detailed-visualization-of-nba-shot-selection/

wind map

April 25, 2015
4:35 pm EST

(time of forecast download)

top speed: 36.6 mph
average: 9.6 mph
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“wind map” - http://hint.fm/wind



http://hint.fm/wind/

& WolframAlpha e

wind 22801 =] ]
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WolframAlpha results for
“wind 22801”

Input interpretation:

wind speed ZIP code 22801

Result:

6 mph (miles per hour) 180° 5 w‘.:[r;

(47 minutes ago)

Show metric

History & forecast: Current week ¥ | | Show metric | | More
Thu Fri Sat Sun Klon Tue
W0 F
10 =
Apr 23 Apr 24 Apr 25 Apr 28 Apr 27 Apr 28
low: Omph average: 6 mph high: 28 mph
Sat, Apr 25, 4:00pm, ... VWed, Apr 22, 10:30pm

Weather station information:

name KSHD (Shenandoah Valley Regional Airport)

relative position 10mi S (from ZIP code 22801)

relative elevation | (comparable to ZIP code 22801)

local time 5:01:34 pm EDT | Saturday, Apnl 25, 2015

sun 15 abowve the horizon

local sunlight

azimuth: 259° oy | altitude: 34°

Show metric More

Units *=

Satellite image *


https://www.wolframalpha.com/input/?i=wind+22801

What is Exploratory Data Analysis (EDA)?

“Seeing what the data can tell us”

e |nitial examination of a dataset:

— Determine data types, summary statistics

— Assess your assumptions about the data

— Start forming hypothesis about phenomenon you observe?
— Question everything; Ask “why” often

— Explore outlierst®

* Supports selection of tools & techniques®
* Can provide basis for additional data collection?

 Verify what you know, expose what you don’t*°



Combining the concepts:
Visual Exploratory Data Analysis

* For this study, | searched for information related to
visuals that:
— Are most helpful to analysts during this exploratory stage
— Can be generated quickly

— Are for analysis, not necessarily communication (i.e. don’t
have to follow all “best practices” for accessibility, information
sharing, or publication at this point)

— Take advantage of human visual perceptual strengths

“Information Seeking Mantra”
Overview first, zoom and filter, then details-on-demand?!



A look at two Basic
Data Visualization Types for EDA:
Bar Graphs & Line Graphs



Bar Graphs

Imply individual values??
Accurately show fixed intervals!3

Used to plot categorical vs quantitative
data

Can be horizontal or vertical

— Should always use vertical when
categories represent time periods

— Horizontal when long categorical
labels needed

Can be used to show distribution as
Histogram where categories are buckets
of the same interval size

DESIGN PRINCIPLES

Axis must start at O to support
comparing values, otherwise misleading

Distance between bars, width of bars
have no quantitative meaning

Consider how bars are grouped
Use light colors if needed

[All unmarked bullets on slide are from reference 4]

Line Graphs

Imply transitions!2
Looks continuous?!3

Avoid for nominal comparisons or
rankings

Can connect points in time series if
intervals consistent

Show values, changes, deviations,
distributions

Can be overlaid on other graph types to
show trends or reference values

DESIGN PRINCIPLES

Aspect Ratio is important

Ensure multiple lines are visually
distinct, can use medium colors

Only include points when viewer needs
to compare instances across lines

Typically linear scale, but Log scale
allows comparison of rates of change

Label lines directly if possible instead of
using legend
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Example Perception-Based Design Principle

Following Principles Single Series Bar Chart

1]

Store B Store A Store C Store D

The axis on a bar graph must start at 0, because we perceive the

80 -
60

..

Misleading Axis Bar Chart

Store B

Store A

Store C

differences between the bar heights as proportional.
(i.e. a bar twice as tall represents a value twice as large) 4

Store D



Can you gain much insight from this set of data
without a visual?

Product Store A StoreB StoreC StoreD
Product 1 92 101 74 66
Product 2 28 90 52 75
Product 3 15 21 7 -10

Let’s create some graphs.



Excel 3D Single Series Bar Chart
Excel Default Single Series Bar Chart -
120
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100
80
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60
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Following Principles Single Series Bar Chart
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Design principles from
Store B Store A Store C Store D “Show Me the Numbers”
by Stephen Few?



Default Excel Bar (Column) Chart
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M Product 3
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-20
Following Principles Bar Chart
@ Product1 = Product2 = Product3
110
-10
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Another option: Small Multiples

(makes a bigger difference with more series)
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Design principles from “Show Me the Numbers” by Stephen Few?*



Excel Default Line Chart with Markers
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Perception of
Multidimensional Data
Visualizations

What happens when we need to encode
more than 3 attributes on a visual?

Like month, sales in dollars, sales person, office location...



Bertin’s Image Theory?

We can only perceive 3 variables (2 planar and 1 retinal) “efficiently”.
Efficient = preattentive, without additional eye motion or attention required.

PLANAR RETINAL

Spatial dimension 1 Texture

Spatial dimension 2 Color @
Shape A
Orientation <
* Size S
Brightness

This means that humans can not effectively visualize 4 dimensions using a
graphical representation on a 2-dimensional display (screen or paper).



Bertin’s Image Theory

Table I: Original Bertin
Associative Selective Ordered Quantitative
Planar Yes Yes Yes Yes
Size Yes Yes Yes
Brightness Yes Yes
|Tezmre Yes Yes Yes
Color Yes Yes
Orientation Yes Yes
Shape Yes

Skipping definitions of the columns in interest of time, but as an example :
Shape is neither ordered nor quantitative because it can’t be scaled for magnitude.
(Does a triangle represent a larger value than a square?)

Bertin says that failure to match the component and the visual “level” (type of scale)
is the single major source of error in design of visualizations. 3



Scatterplot with 2 Dimensions
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3rd Dimension Encoded by Shape
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Dimension
2

3rd Dimension Encoded by Color
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Human vision appears to only be able to differentiate 3 dimensions “efficiently”.

3rd Dimension Encoded by Shape and 4th by Color

Dimension 1

4 Correspondences — X location, Y location, Color, Shape
2 Spatial, 2 Retinal (encoding different dimensions)
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A few notes on color perception

Colorblindness an issue in graphs for
communication, but not as much for analysis
(unless you’re building a tool for others)
Rainbow scales are not good perceptually

— We can visually order small ranges of hue, but not
across entire spectrum

Brightness can be used for ordering values
— Each “level” must be perceptibly different
— Doesn’t linearly map to quantity?

Colors suggested for heatmaps:
— Blue to gray to Red?



» Brewer palettes (colorbrewer.org) provide a range of palettes based on

HSV model which make life easier for us....

Avoid the use of hue to Quantitative encoding
encode quantitative variables e.g. heat maps
QUALITATIVE SEQUENTIAL

set1 blues
00000 00 0000
set2 greens

0000 @ 0000
pastel2 reds

00000

dark2 ylorbr
00000000 0000

Fig. Courtesy of M. Krzwinski,

Note that ROYGBIV Rainbow is not
Quantitative or Ordered

Two-sided quantitative

encodings
DIVERGING

spectral

o o0
rdylbu
o0 o0
rdylgn
- 3 o0
piyg
o0 o0

Brewer palette slides from
Principles of Information
Visualization Tutorial —
Jessie Kennedy?



Colour Blindness
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Fig. Courtesy of M Krzywinski L M
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00000000 020000 0060 o0
020000 00OTDOOO
00000000 20000 00 000

Brewer palette slides from Principles of Information Visualization Tutorial — Jessie Kennedy?



I”

gray through “low” blue heatmap

“high” red through “neutra




Why think about all of this?

As an analyst, you should follow
as many perception-based design principles
as possible when making graphs during
Exploratory Data Analysis.

Good visualizations can help you
make sense of the data,
and spot patterns, trends, and exceptions
with the least effort.

You can ensure you will spot things
that would otherwise be hidden
or difficult to perceive.



Other Techniques to Consider

* These are not necessarily “quick and easy” to create
using common software, but there are tools available
to take advantage of other strengths of human
perception during EDA
— Scatterplot Matrix or GPLOM

e A form of “small multiples”
* Allow many comparisons in one view
— Animation

* We're good at spotting motion

* Can help understand changes in multiple dimensions
over time



Scatterplot Matrix

Dec]| = . H
Month
Allows comparison of an |33 Some of these
every data dimension - comparisons are not
vs every other data Product ideally displayed as
dimension R e scatterplots
35 35 35
Sales I T

[

35 35 35 35

Equipment costs | ¢ ¢ - S P B
[ B sblannacnton | § L - w
35 35 35 35 35
Labor costs

§ sssssvneiile | § H ——.’ w & .20, "

2o ¢ T o z Z 0 o m

N T & o S 9
=l 19 ~+ E.
% =2 3 w i o]
a o o 3
=. = a [§]
(=) ":." c S
| 2 ~t

Images from GPLOM paper — Im, McGuffin, Leung®®



Can split those out into
dimensionally-aligned bar charts

m [74]
=33
zu‘]
g |I|||l|l|||| nllllu'lll ||l..lu|II|
S
[F3]
asd
[4x}
L1
T 1 O 1 O O I O 1
Jan Dec|an Declan Dec
Maonth Manth Month
North Central South

Region

Images from GPLOM paper — Im, McGuffin, Leung*®



New design: Generalized Plot Matrix (GPLOM)
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Images from GPLOM paper — Im, McGuffin, Leung*®



On a larger scale
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GPLOM Tool allows for associative highlighting
and filtering for additional exploration
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The GPLOM tool was shown to reduce analysis time and was ranked as
more fluid and easier to learn than dimensional stacking in Tableau by test subjects. *



Animation'®

e Study showed that animation of 2D dataset which
added a time dimension through animation:

— Was liked by users for data viewing data and helped with
chunking, interpreting, expectations, comparisons, and
focusing/filtering

— However, not favored for grasping the whole or statistically
analyzing the data values

— All subjects said it helped them focus on changes in the
data, and they used the viewer controls to changed the
speed of the animation and to go back and forth and
repeatedly view specific segments

— Subjects wanted ability to bookmark interesting sections
for review



Additional Reading

* Didn’t have time to get into these, but also see

— Article about making visualizations better with Gestalt
Laws: http://sixrevisions.com/usability/data-
visualization-gestalt-laws

— The DataViz Catalogue:
http://www.datavizcatalogue.com

— Scagnostics — scatterplot clustering for high-
dimensional data:
http://www.cs.uic.edu/~tdang/file/ScagExplorer.pdf



http://sixrevisions.com/usability/data-visualization-gestalt-laws
http://sixrevisions.com/usability/data-visualization-gestalt-laws
http://sixrevisions.com/usability/data-visualization-gestalt-laws
http://sixrevisions.com/usability/data-visualization-gestalt-laws
http://sixrevisions.com/usability/data-visualization-gestalt-laws
http://sixrevisions.com/usability/data-visualization-gestalt-laws
http://sixrevisions.com/usability/data-visualization-gestalt-laws
http://www.datavizcatalogue.com/
http://www.cs.uic.edu/~tdang/file/ScagExplorer.pdf
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